May 8, 2021
TechnologyWorking Environment
Centos 7.9, vm , 8core, 16G.
Installation
Install dnsmasq:
# sudo yum install -y dnsmasq
Install dnscrypt-proxy:
# sudo yum install -y dnscrypt-proxy
Wget the chinadns configuration file:
# wget https://raw.githubusercontent.com/felixonmars/dnsmasq-china-list/master/accelerated-domains.china.conf
# mv accelerated-domains.china.conf /etc/dnsmasq.d/accelerated-domains.china.conf
you can replace the 114.114.114.114
via your own dns(china intranet dns).
Configuration
Configure dnsmasq:
# vim /etc/dnsmasq.conf
listen-address=127.0.0.1
no-resolv
conf-dir=/usr/local/etc/dnsmasq.d
server=127.0.0.1#5300
interface=lo
bind-interfaces
Configure dnscrypt-proxy:
# vim /etc/dnscrypt-proxy/dnscrypt-proxy.toml
# 监听5300端口
listen_addresses = ['127.0.0.1:5300', '[::1]:5300']
# 使用下面3个公开的DNS服务
server_names = ['google', 'cloudflare', 'cloudflare-ipv6']
# 如果找不到合适的公开DNS服务,则使用下面的DNS服务
fallback_resolvers = ['9.9.9.9:53', '8.8.8.8:53']
# 担心这些DNS请求被墙,设置使用代理发送DNS请求
force_tcp = true
proxy = 'socks5://127.0.0.1:1086'
Configure /etc/resolv.conf
for using 127.0.0.1
:
nameserver 127.0.0.1
privoxy
In centos 7.9. don’t install this package from epel, download the source code from internet and compile it:
$ privoxy --version
Privoxy version 3.0.28 (https://www.privoxy.org/)
make sure you have specify the gfwlist.
May 2, 2021
Technology完全用ram工作的场景下,关机时需要回写到磁盘上,以下是用来将Ram中的数据回写到磁盘的方法。
# vim /bin/writeback.sh
#!/bin/sh
kkk=`mount | grep "none on / type tmpfs"`
if [ ! -z "$kkk" ]
then
mkdir -p /writeback
mount /dev/mapper/ubuntu--vg-root /writeback
rsync -a --delete --exclude 'tmp' --exclude 'proc' --exclude 'writeback' --exclude 'sys' / /writeback/
fi
创建一个回写的服务:
# vim /etc/systemd/system/run-before-shutdown.service
[Unit]
Description=Run my custom task at shutdown
DefaultDependencies=no
Before=shutdown.target reboot.target halt.target
[Service]
Type=oneshot
ExecStart=/bin/writeback.sh
TimeoutStartSec=0
[Install]
WantedBy=shutdown.target
使能服务:
# systemctl enable run-before-shutdown
则关机时系统会调用回写脚本将Ram中的数据写入到磁盘中。
Apr 30, 2021
Technology环境说明
新建3台虚拟机:
192.168.100.13/14/15, 4核8G, 虚拟机环境
该虚拟机所在的网段为192.168.100.0/24
, 其中dhcp范围为192.168.100.128~192.168.100.254
, 网关为192.168.100.1
OS环境初始化配置
我们期待lxc实例能通过网桥获取到与宿主机(192.168.100.13/14/15)同样的IP地址范围,所以先配置各节点上的网桥br0:
删除手动连接后,NetworkManager会自动拉起另一个:
再次删除此自动建立的连接,直到只看到lxdbr0即可:
建立br0, 并指定eth0为br0的slave设备:
依次类推完成另外两台机器的配置。
相关的配置脚本(这里以192.168.100.14
为例说明)如下,实际环境中需根据具体的配置信息进行更改:
nmcli con show | grep eth0 | awk {'print $2'} | xargs -I % nmcli con delete uuid %
nmcli con show | grep eth0 | awk {'print $4'} | xargs -I % nmcli con delete uuid %
nmcli con show
nmcli conn add type bridge ifname br0 ipv4.method manual ipv4.address "192.168.100.14" ipv4.gateway "192.168.100.1" ipv4.dns "223.5.5.5"
nmcli conn add type bridge-slave ifname eth0 master br0
lxc使用br0网络
lxc可以通过使用不同的profile定义出实例所在的网络,我们通过以下操作新建出一个可以通过网桥br0
获取到192.168.100.0/24
段地址的profile:
[root@node13 ~]# lxc profile list
+---------+---------------------+---------+
| NAME | DESCRIPTION | USED BY |
+---------+---------------------+---------+
| default | Default LXD profile | 0 |
+---------+---------------------+---------+
[root@node13 ~]# lxc profile show default>br0
[root@node13 ~]# vim br0
config: {}
description: Default LXD profile modified for using br0
devices:
eth0:
name: eth0
nictype: bridged
parent: br0
type: nic
root:
path: /
pool: default
type: disk
name: br0
used_by: []
[root@node13 ~]# lxc profile create br0
Profile br0 created
[root@node13 ~]# lxc profile edit br0<br0
[root@node13 ~]# lxc profile list
+---------+--------------------------------------------+---------+
| NAME | DESCRIPTION | USED BY |
+---------+--------------------------------------------+---------+
| br0 | Default LXD profile modified for using br0 | 0 |
+---------+--------------------------------------------+---------+
| default | Default LXD profile | 0 |
+---------+--------------------------------------------+---------+
现在可使用创建出的br0
实例化一个容器,
# lxc launch centos7 node1 --profile br0
# lxc ls
+-------+---------+------------------------+----------------------------------------------+-----------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+-------+---------+------------------------+----------------------------------------------+-----------+-----------+
| node1 | RUNNING | 192.168.100.130 (eth0) | | CONTAINER | 0 |
+-------+---------+------------------------+----------------------------------------------+-----------+-----------+
固定IP的方法:
[root@node13 ~]# lxc exec node1 bash
[root@node1 ~]# vim /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
BOOTPROTO=static
IPADDR=192.168.100.20
NETMASK=255.255.255.0
GATEWAY=192.168.100.1
ONBOOT=yes
HOSTNAME=node1
NM_CONTROLLED=no
TYPE=Ethernet
MTU=
DHCP_HOSTNAME=node1
[root@node1 ~]# reboot
重启之后可以看到lxc确实使用了我们设置的192.168.100.20
IP地址。
[root@node13 ~]# lxc ls
+-------+---------+------------------------+----------------------------------------------+-----------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+-------+---------+------------------------+----------------------------------------------+-----------+-----------+
| node1 | RUNNING | 192.168.100.20 (eth0) | | CONTAINER | 0 |
最后验证与外部网络的互通性:
[root@node13 ~]# lxc exec node1 bash
[root@node1 ~]# ping 192.168.100.10
PING 192.168.100.10 (192.168.100.10) 56(84) bytes of data.
64 bytes from 192.168.100.10: icmp_seq=1 ttl=64 time=0.742 ms
64 bytes from 192.168.100.10: icmp_seq=2 ttl=64 time=0.287 ms
[root@node1 ~]# ping 10.50.208.145
PING 10.50.208.145 (10.50.208.145) 56(84) bytes of data.
64 bytes from 10.50.208.145: icmp_seq=1 ttl=63 time=0.410 ms
64 bytes from 10.50.208.145: icmp_seq=2 ttl=63 time=0.214 ms
^C
--- 10.50.208.145 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 0.214/0.312/0.410/0.098 ms
[root@node1 ~]# ping 10.50.208.147
PING 10.50.208.147 (10.50.208.147) 56(84) bytes of data.
64 bytes from 10.50.208.147: icmp_seq=1 ttl=64 time=0.146 ms
64 bytes from 10.50.208.147: icmp_seq=2 ttl=64 time=0.153 ms
^C
--- 10.50.208.147 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
Apr 29, 2021
Technology1. 文档目的
文档旨在针对在CentOS 7操作系统上安装、配置及运行LXD提供最佳实践。
2. 环境准备
基于快速验证的目的,本文档基于虚拟机搭建,验证机配置如下:
- 操作系统:
CentOS Linux release 7.6.1810 (Core)
, 最小化安装 - 硬件配置: 36核心,246GB内存, 500G磁盘分区
- 软件配置:
- 网络配置: 192.168.100.10/24, 网关192.168.100.1
访问方式(这里提供如何从办公网络直达验证机)
3. 环境搭建
离线情况下,配置内网源后,执行以下命令安装:
# yum install -y snapd net-tools vim
# systemctl enable --now snapd.socket
解压离线安装文件:
# tar xzvf lxcimages.tar.gz ; tar xzvf snap.tar.gz
进入到snap目录下安装snap:
# snap ack core_10958.assert ; snap ack core18_1997.assert; snap ack lxd_20211.assert
# snap install core_10958.snap; snap install core18_1997.snap; snap install lxd_20211.snap
更改内核参数后,重启机器:
$ grubby --args="user_namespace.enable=1" --update-kernel="$(grubby --default-kernel)"
$ grubby --args="namespace.unpriv_enable=1" --update-kernel="$(grubby --default-kernel)"
$ sudo sh -c 'echo "user.max_user_namespaces=3883" > /etc/sysctl.d/99-userns.conf'
# reboot
创建snap目录并添加运行权限:
# ln -s /var/lib/snapd/snap /snap
# usermod -a -G lxd roo
# newgrp lxd
# id
uid=0(root) gid=994(lxd) groups=994(lxd),0(root)
此时需要退出终端后重新登录终端,方可使用lxc
相关命令.
初始化lxd
环境:
[root@lxdpaas ~]# lxd init
Would you like to use LXD clustering? (yes/no) [default=no]:
Do you want to configure a new storage pool? (yes/no) [default=yes]:
Name of the new storage pool [default=default]:
Name of the storage backend to use (btrfs, dir, lvm, ceph) [default=btrfs]: dir
Would you like to connect to a MAAS server? (yes/no) [default=no]:
Would you like to create a new local network bridge? (yes/no) [default=yes]:
What should the new bridge be called? [default=lxdbr0]:
What IPv4 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
What IPv6 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
Would you like the LXD server to be available over the network? (yes/no) [default=no]:
Would you like stale cached images to be updated automatically? (yes/no) [default=yes]
Would you like a YAML "lxd init" preseed to be printed? (yes/no) [default=no]:
此时应无任何镜像,接下来手动导入镜像:
# cd lxcimages
# lxc image import meta-50030de846c046680faf34f7dc3e60284e31f5aab38dfd19c94a2fd1bf895d0c.tar.xz 50030de846c046680faf34f7dc3e60284e31f5aab38dfd19c94a2fd1bf895d0c.squashfs --alias centos7
Image imported with fingerprint: 50030de846c046680faf34f7dc3e60284e31f5aab38dfd19c94a2fd1bf895d0c
# lxc image list
+---------+--------------+--------+----------------------------------+--------------+-----------+---------+------------------------------+
| ALIAS | FINGERPRINT | PUBLIC | DESCRIPTION | ARCHITECTURE | TYPE | SIZE | UPLOAD DATE |
+---------+--------------+--------+----------------------------------+--------------+-----------+---------+------------------------------+
| centos7 | 50030de846c0 | no | Centos 7 x86_64 (20210428_07:08) | x86_64 | CONTAINER | 83.46MB | Apr 29, 2021 at 4:53am (UTC) |
+---------+--------------+--------+----------------------------------+--------------+-----------+---------+------------------------------+
4. lxc操作实练
启动一个lxc 实例:
# lxc launch centos7 db1
Creating db1
Starting db1
进入运行中的实例:
# lxc exec db1 bash
[root@db1 ~]# cat /etc/redhat-release
CentOS Linux release 7.9.2009 (Core)
启动第二个名为db2
的实例:
[root@lxdpaas lxcimages]# lxc launch centos7 db2
Creating db2
Starting db2
[root@lxdpaas lxcimages]# lxc exec db2 bash
[root@db2 ~]#
查看运行中的容器实例:
# lxc ls
+------+---------+-----------------------+----------------------------------------------+-----------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+------+---------+-----------------------+----------------------------------------------+-----------+-----------+
| db1 | RUNNING | 10.159.107.72 (eth0) | fd42:45a:636c:6e69:216:3eff:fe81:347e (eth0) | CONTAINER | 0 |
+------+---------+-----------------------+----------------------------------------------+-----------+-----------+
| db2 | RUNNING | 10.159.107.125 (eth0) | fd42:45a:636c:6e69:216:3eff:fe53:754 (eth0) | CONTAINER | 0 |
+------+---------+-----------------------+----------------------------------------------+-----------+-----------+
停止/删除运行中的容器:
[root@lxdpaas lxcimages]# lxc stop db1
[root@lxdpaas lxcimages]# lxc stop db2
[root@lxdpaas lxcimages]# lxc delete db1
[root@lxdpaas lxcimages]# lxc delete db2
[root@lxdpaas lxcimages]# lxc ls
+------+-------+------+------+------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+------+-------+------+------+------+-----------+
定制化:
# lxc launch c75dhclient k2
# lxc exec k2 /bin/bash
dhclient eth0
vi /etc/yum.repos.d/kkk.repo
yum makecache
yum install -y vim net-tools
exit
# lxc ls | grep k2
| k2 | RUNNING | 10.159.107.248 (eth0) | fd42:45a:636c:6e69:216:3eff:fea0:2c33 (eth0) | CONTAINER | 0 |
导出当前镜像:
[root@lxdpaas ~]# mkdir export
[root@lxdpaas ~]# cd export/
[root@lxdpaas export]# lxc stop k2
[root@lxdpaas export]# lxc publish k2 --alias centos75withvim
Instance published with fingerprint: 7301c7d85d4d56ebcae117aa79cf88868c4821dedb22e641fe66d05cab6599f2
[root@lxdpaas export]# lxc image list
+-----------------+--------------+--------+----------------------------------+--------------+-----------+----------+------------------------------+
| ALIAS | FINGERPRINT | PUBLIC | DESCRIPTION | ARCHITECTURE | TYPE | SIZE | UPLOAD DATE |
+-----------------+--------------+--------+----------------------------------+--------------+-----------+----------+------------------------------+
| c75dhclient | 3a063c11b987 | no | | x86_64 | CONTAINER | 381.84MB | Apr 29, 2021 at 8:06am (UTC) |
+-----------------+--------------+--------+----------------------------------+--------------+-----------+----------+------------------------------+
| centos7 | 50030de846c0 | no | Centos 7 x86_64 (20210428_07:08) | x86_64 | CONTAINER | 83.46MB | Apr 29, 2021 at 4:53am (UTC) |
+-----------------+--------------+--------+----------------------------------+--------------+-----------+----------+------------------------------+
| centos75withvim | 7301c7d85d4d | no | | x86_64 | CONTAINER | 420.72MB | Apr 29, 2021 at 8:23am (UTC) |
+-----------------+--------------+--------+----------------------------------+--------------+-----------+----------+------------------------------+
[root@lxdpaas export]# lxc image export centos75withvim .
Image exported successfully!
[root@lxdpaas export]# ls
7301c7d85d4d56ebcae117aa79cf88868c4821dedb22e641fe66d05cab6599f2.tar.gz
测试:
# lxc launch centos75withvim test1
Creating test1
Starting test1
[root@lxdpaas export]# lxc exec test1 /bin/bash
[root@base ~]# dhclient eth0
[root@base ~]# which vim
/usr/bin/vim
[root@base ~]# which ifconfig
/usr/sbin/ifconfig
有关数据库的更改:
yum install -y mariadb-server
systemctl enable mariadb
5. 资源隔离
制作benchmark容器:
$ lxc launch centos7 bench -c security.privileged=true
# yum install -y epel-release; yum install -y stress
# yum install which
# which stress
# shutdown -h now
$ lxc publish bench --alias bench
$ lxc launch bench k1
$ lxc exec k1 /bin/bash
stress --cpu 5
此时可以看到,宿主机上的5个cpu跑满:
设置CPU限制:
# lxc config set bench limits.cpu 2
即便容器中的进程未变,但是主机上可以看到,只有两个CPU跑满:
对内存的使用规则是同样的。
z. 定制化
为了适配用户习惯,做了以下修改:
# yum install -y mate-desktop xrdp mate* gnome-terminal firefox wqy* evince
# echo mate-session>/root/.Xclients
# chmod 777 /root/.Xclients
# systemctl start xrdp
# systemctl enable xrdp
外部需要做iptables转发:
$ sudo iptables -D FORWARD -o virbr0 -j REJECT --reject-with icmp-port-unreachable
$ sudo iptables -D FORWARD -i virbr0 -j REJECT --reject-with icmp-port-unreachable
$ sudo iptables -t nat -A PREROUTING -p tcp --dport 13389 -j DNAT --to-destination 192.168.100.10:3389
$ sudo iptables -t nat -A POSTROUTING -p tcp -d 192.168.100.10 --dport 3389 -j SNAT --to-source 10.50.208.147
外部的centos7机器上,因为升级了内核的关系,需要用如下命令开始运行:
lxc launch images:centos/7 blah -c security.privileged=true
当前制作的centos7.5容器似乎不能满足lxc的功能?
Apr 27, 2021
Technology1. 目的
将Ubuntu18.04.1操作系统(arm64)完全运行在内存中。
2. 准备材料
Ubuntu 18.04.1 arm64安装iso.
arm64服务器/libvirtd/virt-manager.(在没有实体服务器的情况下,可以用虚拟机来模拟测试).
3. 步骤
最小化安装Ubuntu 18.04.1 操作系统, 根分区最好包含所有分区(all in one)。
安装完毕操作系统后,定制自己需要的软件包及准备环境后,删除所有的临时文件,尽量瘦身系统。这是因为内存定制化后,所有的文件在启动时将被加载到内存!全新安装的ubuntu大约占据约1.5GB的磁盘空间。
以下为定制为RAM启动的流程:
步骤一:
更改/etc/fstab
文件内容,首先备份该文件:
# cp /etc/fstab /etc/fstab.bak
编辑/etc/fstab
文件内容,找到标识根分区(/)的行,更改为以下内容(下为示例):
#/dev/mapper/ubuntu--vg-root / ext4 errors=remount-ro 0 1
none / tmpfs defaults 0 0
步骤二:
更改initramfs中的local
脚本内容, initramfs 包含的工具和脚本,在正式的根文件系统的初始化脚本 init 启动之前,就被挂载并完成相应的初始化工作。我们需要提前将磁盘根分区中的内容拷贝入tmpfs
中,以便在/etc/fstab
开始执行的时候找寻到正确的分区.
首先备份/usr/share/initramfs-tools/scripts/local
文件:
# cp /usr/share/initramfs-tools/scripts/local /usr/share/initramfs-tools/scripts/local.bak
编辑local
文件,更改其Mount root
部分的处理逻辑(约204行左右内容):
# FIXME This has no error checking
# Mount root
#mount ${roflag} ${FSTYPE:+-t ${FSTYPE} }${ROOTFLAGS} ${ROOT} ${rootmnt}
# Start of ramboottmp
mkdir /ramboottmp
mount ${roflag} -t ${FSTYPE} ${ROOTFLAGS} ${ROOT} /ramboottmp
mount -t tmpfs -o size=100% none ${rootmnt}
cd ${rootmnt}
cp -rfa /ramboottmp/* ${rootmnt}
umount /ramboottmp
### End of ramboottmp
保存该文件后,重新编译initramfs:
# mkinitramfs -o /boot/initrd.img-ramboot
编译成功后,将local
文件替换会原来的版本:
# cp -f /usr/share/initramfs-tools/scripts/local.bak /usr/share/initramfs-tools/scripts/local
步骤三:
更改grub,以使用刚才编译出的initrd.img-ramboot
来启动操作系统:
更改第一启动项中的/initrd
行,替换为:
# chmod +w /boot/grub/grub.cfg
# vim /boot/grub/grub.cfg
.....
.....
linux /boot/vmlinuz-4.15.0-29-generic root=/dev/mapper/ubuntu--vg-root ro
initrd /boot/initrd.img-ramboot
......
......
# chmod -w /boot/grub/grub.cfg
步骤四:
重启,重启时选择第一启动项,此时根分区会整体被加载到tmpfs
中。
4. 性能对比测试
测试环境定义:
- aarch64 4核
- 64 GB 内存
- 100 GB 磁盘分区
- Ubuntu 18.04.1 LTS
- 内核版本: 4.15.0-29-generic
- fio版本: fio-3.1
所有测试样例均在ramdisk
主机及传统主机上运行并对比.
4.1 fio 4k随机读写
测试命令如下:
# fio --name TEST --eta-newline=5s --filename=fio-tempfile.dat --rw=randrw --size=500m --io_size=10g --blocksize=4k --ioengine=libaio --fsync=1 --iodepth=1 --numjobs=1 --runtime=60 --group_reporting
指标 | 内存型主机 | 传统主机 |
---|
READ bw | bw=513MiB/s (538MB/s) | bw=85.0KiB/s (87.0kB/s) |
READ io | io=5133MiB (5382MB) | io=5104KiB (5226kB) |
READ iops | IOPS=131k | IOPS=21 |
WRITE bw | bw=510MiB/s (535MB/s) | bw=88.1KiB/s (90.2kB/s) |
WRITE io | io=5107MiB (5355MB) | io=5288KiB (5415kB) |
WRITE iops | IOPS=131k | IOPS=22 |
测试显示:4K随机读写的带宽对比,内存型主机是传统主机的约6000倍,读IOPS/写IOPS,内存型主机是传统主机的约6000倍。
4.2 fio 4k顺序读写
测试命令如下:
# fio --name TEST --eta-newline=5s --filename=fio-tempfile.dat --rw=rw --size=500m --io_size=10g --blocksize=4k --ioengine=libaio --fsync=1 --iodepth=1 --numjobs=1 --runtime=60 --group_reporting
指标 | 内存型主机 | 传统主机 |
---|
READ bw | bw=640MiB/s (671MB/s) | bw=73.2KiB/s (75.0kB/s) |
READ io | io=5133MiB (5382MB) | io=4396KiB (4502kB) |
READ iops | IOPS=164k | IOPS=18 |
WRITE bw | bw=637MiB/s (668MB/s) | bw=76.8KiB/s (78.6kB/s) |
WRITE io | io=5107MiB (5355MB) | io=4608KiB (4719kB) |
WRITE iops | IOPS=163k | IOPS=19 |
测试显示:4K顺序读写的带宽对比,内存型主机是传统主机的约9000倍,读IOPS/写IOPS,内存型主机是传统主机的约9000倍。