关于STM32板上的12864液晶

板子是09年入手的,但是一直没时间好好玩,最近端起来觉得有必要好好研究一番。为了以后翻阅方便,全中文记下来。
###12864 通常所说的12864LCD显示块是所说的点阵液晶显示模块,就是由128X64个液晶显示点组成的一个128列X64行的阵列,所以也就叫成了12864。每个显示点都对应着有一位二进制数,0表示灭,1表示亮。存储这些点阵信息的RAM被称为显示数据存储器。如果要显示某个图形或汉字就是将相应的点阵信息写入到对应的存储单元中。图形或汉字的点阵信息是由自己设计,这时候问题的关键是显示点在液晶屏上的位置与其在存储器中的地址之间的关系。
显示点在64X64液晶屏上的位置由列号(line,0~63)与行号(line,0~63)确定。512X8 bits RAM中某个存储单元的地址由页地址(Xpage,0~7)和列地址(Yaddress,0~63)确定。每个存储单元存储8个液晶点的显示信息。也就是说,一个页的大小是8. 运算关系则是64x64=(64x8)x8=512x8.
由于多数液晶显示模块的驱动电路是由一片行驱动器和两片列驱动器构成,所以12864液晶屏实际上是由左右两块独立的64X64液晶屏拼接而成,每半屏有一个512X8 bits显示数据RAM。左右半屏驱动电路及存储器分别由片选信号CS1和CS2选择。(少数厂商为了简化用户设计,在模块中增加译码电路,使得128X64液晶屏就是一个整屏,只需一个片选信号。)

如如果点亮12864的屏中(20,30)位置上的液晶点,因列地址30小于64,该点在左半屏第29列,所以CS1有效;行地址20除以8取整得2,取余得4,该点在RAM中页地址为2,在字节中的序号为4;所以将二进制数据00010000(也可能是00001000,高低顺序取决于制造商)写入Xpage=2,Yaddress=29的存储单元中即点亮(20,30)上的液晶点。

这是为了为了使液晶点位置信息与存储地址的对应关系更直观关,将64X64液晶屏从上至下8等分为8个显示块,每块包括8行X64列个点阵。每列中的8行点阵信息构成一个8bits二进制数,存储在一个存储单元中。(需要注意:二进制的高低有效位顺序与行号对应关系因不同商家而不同)存放一个显示块的RAM区称为存储页。即64X64液晶屏的点阵信息存储在8个存储页中,每页64个字节,每个字节存储一列(8行)点阵信息。因此存储单元地址包括列地址(Yaddress,0~63)和页地址(Xpage,0~7)。

以上就是对于12864点阵液晶显示器的原理介绍。

在DX32开发板上的液晶是怎么一回事呢?它的封装图如下:

128641.jpg

Datasheet有72页,乱七八糟的会讲一大堆。但是事实上我们只需要关注和软件有关的方面,拿一个很简单的开启/关闭LCD的例子来说,DataSheet里有这样的表格:

CommandA0 /RD /WRD7 D6 D5 D4 D3 D2 D1 D0Function
Display On/OFF0 1 01 0 1 0 1 1 1 1LCD Display ON
Display On/OFF0 1 01 0 1 0 1 1 1 0LCD Display OFF

那么会有对应的代码:

	/**************************************************************
	**函数名:LcdOnOff
	**功能:开关LCD
	***************************************************************/
	void LcdOnOff(u8 onoff)
	{
	     if(onoff>0)
			 LcdCmd(0xaf);       //开显示
	     else
			 LcdCmd(0xae);          	//关显示
	}

0xaf的二进制的值是1010 1111, 而0xae的值则是1010 1110, 这点在手册中容易引起混淆,因为它操蛋的把前面的一系列值都省略了,表格里的才是完整的应该发送的命令。

再拿一个例子来说,

	/**************************************************************
	**函数名:LcdInit
	**功能:初始化LCD,初始化后需要用LcdCmd(0xaf)命令打开显示
	***************************************************************/
	const u8 LCD_Tab[] = {		/*0x26改0x27可增加对比度*/
		0xa2,0xa0,0xc8,0xf8,0x00,0x26,0x2f,0x81,0x05,0xa4,0xa6,0xac,0x00,0xee,0x40
	};
	void LcdInit(void)
	{
		u16 i;
		RSTLCDS_L;
		for(i=0;i<65530;i++);
		RSTLCDS_H;
	
		/* Why we have to write 15 times for the LCD_Tab? */
		for(i=0;i<15;i++)
			LcdCmd(LCD_Tab[i]);
		LcdCmd(0xaf);       //开显示
	}

在初始化LCD的时候我们需要依次写入命令,这里我们把命令做成一个数组,就是LCD_Tab数组, 那么命令的格式如下:
0xa2 LCD bits set, 0 means normal displaying
0xa0 ADC Select. Set the display RAM address SEG output corresponding, 0 means normal.
0xc8 Common Output Set, means reverse direction.
0xf8 Booster ratio.

所有这些在DataSheet中均有详细说明。
总之,对于12864,我们只要把它看成是一个“黑盒子”,输入对应的值,盒子上就能显示出怎样的值,如此就可以得到我们要的结果。

Add vlan to existing machine

增加一个VLAN设备:

	$ ip link add link eth0 name eth0.100 type vlan id 100

查看增加的VLAN设备详情:

	$ ip -d link show eth0.100

增加一个IPV4地址:

	$ ip addr add 192.168.100.1/24 brd 192.168.100.255 dev eth0.100
	$ ip link set dev eth0.100 up

关闭一个VLAN设备:

	$ ip link set dev eth0.100 down

移除一个VLAN设备:

	$ ip link delete eth0.100

How to setup STM32 Project in eclipse

###Preparation ####STM Standard Peripheral Lib Download Link for STSW-STM32054STM32F10x standard peripheral library :
http://www.st.com/web/catalog/tools/FM147/CL1794/SC961/SS1743/PF257890
Unsip the downloaded library and you will get several folders, the Libraries folder is the pure libs. ####Cross-Compiler for STM32 Download the cross-compiler from CodeSourcery ARM EABI toolchain - Mentor Graphics:
https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription?@template=lite
You have to choose EABI version. Download and install it, you will get “arm-none-eabi-” prefixed cross-compiler.
####Eclipse plugins Help-> Install New Software, Add the URL for gnuarm:
http://gnuarmeclipse.sourceforge.net/updates
Then Install CDT GNU Cross Development Tools , after install the plugin, you will asked to reboot, just reboot. Now your preparation is OK.

###Create a new project In Eclipse, Click File->New->C project, choose “ARM Cross Target Applcation (End of life)", choose “Empty Project” “ARM Linux GCC(Sourcery Lite Bare), give the Project name and click Next Button, then click Finish. you will see the newly created project in the Project Explorer.

eclipse1.jpg

Copy the Library files into your own project, take “stmExample” project for example:

	[Trusty@DashArch STM32F10x_StdPeriph_Lib_V3.5.0]$ pwd
	/media/y/embedded/stm32/dev/lib/STM32F10x_StdPeriph_Lib_V3.5.0
	[Trusty@DashArch STM32F10x_StdPeriph_Lib_V3.5.0]$ cp -r  Libraries/ ~/workspace/stmExample/	 

Your project should seem like this:

eclipse2.jpg

Now you have to prepare your startup file, notice you have to use “S” suffixed file name, and you have to remove the remaining directory except the .S file:

	[Trusty@DashArch startup]$ pwd
	/home/Trusty/workspace/stmExample/Libraries/CMSIS/CM3/DeviceSupport/ST/STM32F10x/startup
	[Trusty@DashArch startup]$ ls
	arm  gcc_ride7  iar  TrueSTUDIO
	[Trusty@DashArch startup]$ cp TrueSTUDIO/startup_stm32f10x_hd.s ./startup_stm32f10x_hd.S
	[Trusty@DashArch startup]$ ls
	arm  gcc_ride7  iar  startup_stm32f10x_hd.S  TrueSTUDIO
	[Trusty@DashArch startup]$ rm -rf TrueSTUDIO/ iar/ gcc_ride7/ arm/
	[Trusty@DashArch startup]$ ls
	startup_stm32f10x_hd.S

Create a directory named src to contains your own project files.

	[Trusty@DashArch stmExample]$ mkdir src
	[Trusty@DashArch stmExample]$ pwd
	/home/Trusty/workspace/stmExample
	[Trusty@DashArch stmExample]$ ls
	Libraries  src

Copy the project files into “src” directory:

	[Trusty@DashArch STM32F10x_StdPeriph_Template]$ ls
	EWARM  HiTOP  main.c  MDK-ARM  Release_Notes.html  RIDE  stm32f10x_conf.h  stm32f10x_it.c  stm32f10x_it.h  system_stm32f10x.c  TrueSTUDIO
	[Trusty@DashArch STM32F10x_StdPeriph_Template]$ cp stm32f10x_* ~/workspace/stmExample/src/
	[Trusty@DashArch STM32F10x_StdPeriph_Template]$ pwd
	/media/y/embedded/stm32/dev/lib/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Template
Copy the link script to root directory of your project:
	[Trusty@DashArch STM32100B-EVAL]$ pwd
	/media/y/embedded/stm32/dev/lib/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Template/TrueSTUDIO/STM32100B-EVAL
	[Trusty@DashArch STM32100B-EVAL]$ cp stm32_flash.ld  ~/workspace/stmExample/

You have to modify the link script according to your own flash layout and memory layout, My CPU is STM32F103VC, which has 48K RAM and 256K Flash, so the configuration is listed as:


/*
Linker subscript for STM32F051 definitions with 64K Flash and 8K RAM
Copyright RAISONANCE 2007
!!! This file is automatically generated by RIDE !!!
Do not modify it, as it will be erased at every link.
You can use, copy and distribute this file freely, but without any warranty.
*/

/* Memory Spaces Definitions */

ENTRY(Reset_Handler)

MEMORY
{
  FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 256K
  RAM  (xrw) : ORIGIN = 0x20000000, LENGTH = 48K
}

/* highest address of the user mode stack */
_estack = 0x2000c000;


/*
Common part of the linker scripts for STR71x devices in FLASH mode
(that is, the FLASH is seen at 0)
Copyright RAISONANCE 2005
You can use, modify and distribute this file freely, but without any warranty.
*/

/* Sections Definitions */

SECTIONS
{
    /* for Cortex devices, the beginning of the startup code is stored in the .isr_vector section, which goes to FLASH */
    .isr_vector :
    {
	. = ALIGN(4);
        KEEP(*(.isr_vector))            /* Startup code */
	. = ALIGN(4);
    } >FLASH
    
    /* the program code is stored in the .text section, which goes to Flash */
    .text :
    {
	    . = ALIGN(4);
	    
        *(.text)                   /* normal code */
        *(.text.*)                 /* -ffunction-sections code */
        *(.rodata)                 /* read-only data (constants) */
        *(.rodata*)                /* -fdata-sections read only data */
        *(.glue_7)                 /* TBD - needed ? */
        *(.glue_7t)                /* TBD - needed ? */

	/* Necessary KEEP sections (see http://sourceware.org/ml/newlib/2005/msg00255.html) */
	KEEP (*(.init))
	KEEP (*(.fini))
	
	    . = ALIGN(4);
        _etext = .;
	    /* This is used by the startup in order to initialize the .data section */
        _sidata = _etext;
    } >FLASH
    
    /* This is the initialized data section
    The program executes knowing that the data is in the RAM
    but the loader puts the initial values in the FLASH (inidata).
    It is one task of the startup to copy the initial values from FLASH to RAM. */
    .data  : AT ( _sidata )
    {
	    . = ALIGN(4);
        /* This is used by the startup in order to initialize the .data secion */
        _sdata = . ;
        _data = . ;
        
        *(.data)
        *(.data.*)
        *(.RAMtext)

	    . = ALIGN(4);
	    /* This is used by the startup in order to initialize the .data secion */
   	    _edata = . ;
    } >RAM
    
    /* This is the uninitialized data section */
    .bss :
    {
	    . = ALIGN(4);
        /* This is used by the startup in order to initialize the .bss secion */
        _sbss = .;
        _bss = .;
        
        *(.bss)
        *(.bss.*) /* patched by elias - allows the use of -fdata-sections */
        *(COMMON)
        
	    . = ALIGN(4);
	    /* This is used by the startup in order to initialize the .bss secion */
   	 _ebss = . ;
    } >RAM
    
    PROVIDE ( end = _ebss );
    PROVIDE ( _end = _ebss );
    
    __exidx_start = .;
    __exidx_end = .;
    
    /* after that it's only debugging information. */
    
    /* remove the debugging information from the standard libraries */
    /DISCARD/ :
    {
     libc.a ( * )
     libm.a ( * )
     libgcc.a ( * )
     }

    /* Stabs debugging sections.  */
    .stab          0 : { *(.stab) }
    .stabstr       0 : { *(.stabstr) }
    .stab.excl     0 : { *(.stab.excl) }
    .stab.exclstr  0 : { *(.stab.exclstr) }
    .stab.index    0 : { *(.stab.index) }
    .stab.indexstr 0 : { *(.stab.indexstr) }
    .comment       0 : { *(.comment) }
    /* DWARF debug sections.
       Symbols in the DWARF debugging sections are relative to the beginning
       of the section so we begin them at 0.  */
    /* DWARF 1 */
    .debug          0 : { *(.debug) }
    .line           0 : { *(.line) }
    /* GNU DWARF 1 extensions */
    .debug_srcinfo  0 : { *(.debug_srcinfo) }
    .debug_sfnames  0 : { *(.debug_sfnames) }
    /* DWARF 1.1 and DWARF 2 */
    .debug_aranges  0 : { *(.debug_aranges) }
    .debug_pubnames 0 : { *(.debug_pubnames) }
    /* DWARF 2 */
    .debug_info     0 : { *(.debug_info .gnu.linkonce.wi.*) }
    .debug_abbrev   0 : { *(.debug_abbrev) }
    .debug_line     0 : { *(.debug_line) }
    .debug_frame    0 : { *(.debug_frame) }
    .debug_str      0 : { *(.debug_str) }
    .debug_loc      0 : { *(.debug_loc) }
    .debug_macinfo  0 : { *(.debug_macinfo) }
    /* SGI/MIPS DWARF 2 extensions */
    .debug_weaknames 0 : { *(.debug_weaknames) }
    .debug_funcnames 0 : { *(.debug_funcnames) }
    .debug_typenames 0 : { *(.debug_typenames) }
    .debug_varnames  0 : { *(.debug_varnames) }
}

Now create a sample main.c under the src directory and input your source code.

###Configure the project Right click your project, select Properties, C/C++ Build -> Settings, ARM Linux GCC Assembler(Sourcery Lite Bare)/Preprocessor, add a Defined symbols(-D), also you have to add this into ARM Linux GCC Compiler(Sourcery Lite Bare):

	STM32F10X_HD
	USE_STDPERIPH_DRIVER

In ARM Linux GCC C Compiler(Sourcery Lite Bare)-> Directories, add Include paths(-i) add following:

eclipse3.jpg

Specify the link script:
ARM Linux GCC CLinker(Sourcery Lite Bare) -> General, Script file(-T) /home/Trusty/workspace/stm32archlinux/stm32_flash.ld

###Build and Debug Right click the project and click “Build project”, then you got your project compiling and linking, finally you got your Binary named stmExample.elf.
Now we can use OpenOCD for writing the image into the flash and debugging it.

Run->Debug Configuration, you will see Zylin Embedded debug(Native) is available, right click and choose “Create new”, create a new debug item.
Choose the Main:

eclipse4.jpg

Choose the Debugger:

eclipse5.jpg

Choose Commands:

eclipse6.jpg

The configuration file is :

	target remote localhost:3333
	monitor reset
	monitor halt
	monitor flash protect 0 0 11 off
	monitor flash write_image erase /home/Trusty/workspace/stm32archlinux/Debug/stm32archlinux.hex 0 ihex
	disconnect
	target remote localhost:3333
	monitor reset
	monitor halt


Open your own openocd, and then using eclipse to connect the gdb. Remember “toggle breakpoint” and you will get a hardware breakpoint. Enjoy the debugging.

Solution On Joggler

###Hardware Joggler
Intel(R) Atom(TM) CPU Z520 @ 1.33GHz Dual Core
MemTotal: 504480 kB
Harddisk: 500G External USB.

###System and Software Download the Ubuntu Base/Server 12.04 LTS (Precise) (Joggler Image v1.4 - 09/04/2013) from the
http://joggler.exotica.org.uk/ubuntu/ From the ubuntu website we know 12.04 LTS will supported to 2017, I think that fits my needs.
Unzip the download image:

	gunzip ubuntu_base_12.04-v1.4-ext4.img.gz
	dd if=./ubuntu_base_12.04-v1.4-ext4.img of=/dev/sdc bs=1M

The use this external usb disk for booting up the joggler. After joggler has been booted up, install coresponding packages.

###Prevent Hard disk from hiberating Add following lines to crontab -e

	*/4 * * * * fdisk -l /dev/uba>/dev/null && echo abc>/root/done.txt

Conky Customization

Add existing user to specified group

The problem is : why I can’t use hddtemp? This is because hddtemp need priviledge for accessing the disk related equipment.

	[Trusty@XXXyyy ~]$ whoami
	Trusty
	[Trusty@XXXyyy ~]$ groups
	root log kvm users vboxusers
	[Trusty@XXXyyy ~]$ su root
	Password: 
	[root@XXXyyy Trusty]# groups
	root bin daemon sys adm disk wheel log

But this didn’t solve the problem, I have to add prividge in /etc/sudoes,

	# visudo
	Trusty ALL = NOPASSWD: /usr/bin/hddtemp

Therefore in the configuration file of conky I need to replace the hddtemp with “sudo hddtemp”, everything will be displayed.

Now testing the Conky

After you have installed conky, the first thing for you to do is to edit its configuration file, to decide what to display on your own widget, my configuration file is listed as following:

alignment top_right
background yes
border_width 1
cpu_avg_samples 2
default_color black
default_outline_color blue
default_shade_color blue
draw_borders no
draw_graph_borders yes
draw_outline no
draw_shades no
use_xft yes
xftfont AR PL KaitiM GB:size=12
gap_x 5
gap_y 30
minimum_size 280 5
net_avg_samples 2
no_buffers yes
out_to_console no
out_to_stderr no
extra_newline no
own_window yes
own_window_class Conky
own_window_type override
##设置conky的默认背景色
##own_window_colour 573049
##很重要,只有启用argb才能透明,但是如果窗口属性如果设置为override,可能无法生效
#own_window_argb_visual yes
##设置透明的alpha值0-255,0为透明,255不透明
#own_window_argb_value 0
##own_window_argb_visual true
##own_window_argb_value 120
own_window_transparent yes
double_buffer yes
stippled_borders 0
update_interval 1
uppercase no
use_spacer none
show_graph_scale no
show_graph_range no

TEXT
#${color red}${font AR PL KaitiM GB:style=Blod:size=17}    ${time %Y.%m.%d %H:%M:%S}
#${font AR PL KaitiM GB:style=Blod:size=12}
#${font AR PL KaitiM GB:style=Blod:size=12}${scroll 16 $nodename - $sysname $kernel on $machine}
#$hr
#${font AR PL KaitiM GB:style=Blod:size=14}${color green}${exec cal}
#$hr
${font AR PL KaitiM GB:style=Blod:size=12}${color purple}Uptime:$color $uptime
${color purple}Frequency (in MHz):$color $freq
#${color purple}Frequency (in GHz):$color $freq_g
${color purple}RAM: $color$mem/$memmax - $memperc% ${membar 4}
${color purple}Swap: $color$swap/$swapmax - $swapperc% ${swapbar 4}
${color purple}CPU1: $color${cpu cpu1}% ${cpubar 4}
${color purple}CPU2: $color${cpu cpu2}% ${cpubar 4}
${color purple}CPU3: $color${cpu cpu3}% ${cpubar 4}
${color purple}CPU4: $color${cpu cpu4}% ${cpubar 4}
${color purple}Processes: $color $processes  ${color red}Running:$color $running_processes
$hr
#${color red}Temp:
${color purple}CPU1 Temp: ${color red}${exec sensors | grep 'Core 0' | awk {'print $3'}}
${color purple}CPU2 Temp: ${color red}${exec sensors | grep 'Core 1' | awk {'print $3'}}
${color purple}System Temp: ${color red}${exec sensors | grep 'temp1' | tail -1 | awk {'print $2'}}
${color purple}Hard Temp: ${color red}${exec sudo hddtemp /dev/sda -n -u=C}°C
$hr
#${color red}File systems:
${color black}${exec df -h | grep /dev/sda3 | awk {'print $3'}} / $color${fs_used /}/${fs_size /} ${fs_bar 6 /}
${exec df -h | grep /dev/sda2 | awk {'print $3'}} x $color${exec df -h | grep /dev/sda2 | awk {'print $3'}}/138GB ${fs_bar 6 /media/ubuntu}
#${exec df -h | grep /dev/sda8 | cut -c40-43} /boot $color${fs_used /boot}/${fs_size /boot} ${fs_bar 6 /boot}
$hr
#${color red}Networking:
#${color red}eth0:
#Up:$color ${upspeed eth0} ${color red} - Down:$color ${downspeed eth0}
${color red}br0:
Up:$color ${upspeed br0} ${color red} - Down:$color ${downspeed eth0}
#${color red}ppp0:
#${color red}Up:$color ${upspeed ppp0} ${color red} - Down:$color ${downspeed ppp0}
$hr
${color red}Name              PID   CPU%   MEM%
${color black} ${top name 1} ${top pid 1} ${top cpu 1} ${top mem 1}
${color black} ${top name 2} ${top pid 2} ${top cpu 2} ${top mem 2}
${color black} ${top name 3} ${top pid 3} ${top cpu 3} ${top mem 3}
${color purple} ${top name 4} ${top pid 4} ${top cpu 4} ${top mem 4}
${color purple} ${top name 5} ${top pid 5} ${top cpu 5} ${top mem 5}


In fact I didn’t finished the Translucent, so I use the Transparent, a little bit ugly, but it’s OK.

Add it into awesome

Simply add one line in your ~/.config/awesome/rc.lua could solve the problem:

	awful.util.spawn("conky")

Now you can enjoy your Conky.

conky.jpg